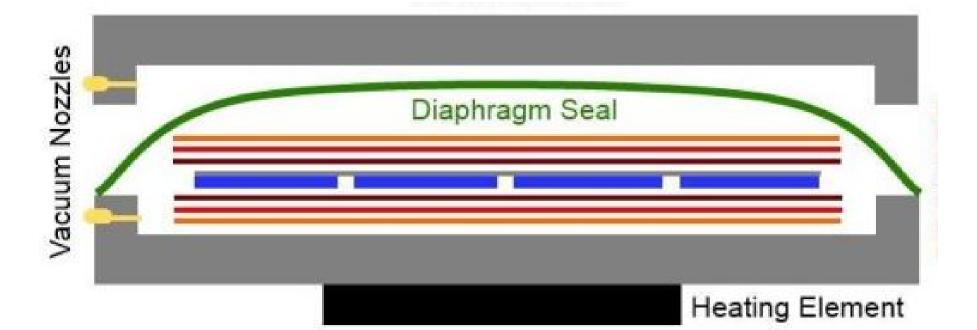
SSCP: Optimization and Characterization of the Encapsulation Stack Eric So, Tiffany McKenzie Stanford University

Background


The Stanford Solar Car Project (SSCP) is an undergraduate student group which aims to train the next generation of engineers as they design and build cars to race in the World Solar Challenge, a 2,000-mile race across the Australian Outback. Stanford's vehicles achieved fourth and sixth place finishes in 2013 and 2015, respectively.

Introduction

In the World Solar Challenge, a team's race potential is greatly affected by the performance of the solar array. The Stanford Team prides itself in creating the car with as little outsourcing as possible. Therefore, determining the optimal encapsulation stack is crucial. Encapsulation, in essence, is a way to protect the fragile solar cells as well as maintain or even improve the efficiency.

Encapsulation Stack

The encapsulation stack is composed of several layers-the components being: the topsheet, backsheet, encapsulant, and solar cells. The encapsulation method is to apply vacuum pressure and heat the stack, allowing the encapsulant to flow and cure, thereby laminating the cells.

Process

Pictured above is a diagram of the layers of materials used in lamination. The combination of these materials is known as the 'encapsulation stack'. Generally, this stack includes a top sheet which is laid down first then encapsulant, solar cell, encapsulant, backsheet, and then breather cloth to allow even vacuum across the entire surface. The layers are enclosed within a silicone diaphragm and hot plate sealed with vacuum tape. Vacuum is pulled and temperature is increased to the flow temperature for the encapsulant.

Summer Undergraduate Research Institute 2016

Materials

Topsheets: FEP, ETFE, 3M Encapsulants: Mitsui Polyolefin, STR EVA, 3M Polyolefin, Dow Corning Silicone, Dupont Ionomer Backsheets: Flexcon KPE, Flexcon PPE, Akalight, Dymat PYE, Madico RLight, Madico RLean, Madico R

Flash Tester Set-Up

Flash testing is a unique and powerful way of testing the efficiency of solar cells. For this research project, the flash tester lamp was placed on a table and aligned so that the flash pulse would go directly through a window to illuminate the solar cells within the dark room. There the cells were mounted on an angle-adjustable wooden frame with a thermocouple probing the back of the solar module (ensuring that the temperature was at the standard 25°C). When the light hits the cells, measurements such as the short circuit current (Isc), the open circuit voltage (Voc), series resistance (Rs), and the efficiency are taken. For each set of measurements, the flash tester software plots a point on a IV curve in order to graphically show the power output of the module. A reference cell is also used to monitor the light intensity for the measurements (which was kept constant throughout the experiment at 1 sun).

Series Resistance of High-Efficiency Solar Cells

It can be difficult to obtain accurate flash measurements for high efficiency cells due to their large capacitive effects. This is caused by the cells charging on the rising edge of an illumination pulse or discharging on the falling edge. This charging and discharging of the cell capacitance alters the current measured and thereby affects other parameters used to characterize the cell's electrical performance. In order to counter this capacitive effect, the flash tester uses a special technique that includes applying a small voltage modulation throughout the duration of a flash pulse, thereby keeping the cell's carrier concentration constant i.e putting the cell into a steady-state condition which then allows for full and accurate IV characterization of the cell/module being tested.

Method

For this project, 1x2 solar cell modules were tested. Before each test, the system was calibrated with a reference module and at each angle (90 through to 50 degrees with respect to the horizontal), the Rs modulation target value was adjusted to be within 10% agreement with the Rs and the Rs modulation. For each encapsulation stack, 2-3 modules were tested and for each module, 10 iterations of testing was done at each angle and the results were then saved according to which encapsulation stack the module was associated with. In order to determine the change in efficiency/power output, the modules were soldered and tested before encapsulation, as well as tested after encapsulation. For each angle the results were averaged separately for before and after testing routines, then these averages compared in order to determine which encapsulation stack led to minimal efficiency loss / maximum efficiency gain at the different angles tested.

instruments	Initialize C:\SintonInstru	Calibrate	Measure	Intensity Re-	ipe File Recipe File Resul	ts file Results File PDF Report	Disabled	MultiFlash v1.19 © Sinton instruments 2015	înstru
ol tus:	Recipe: Stanford 2c	Flash\ Alternet		Cancel Ro	atine Operator Access Unlock	Admin Software Access Unlock Lock	TCP Connection Down		Tool Status:
Advanced Settings DAQ Set	ttings Advanced Features	Binning Alarms Automat	ion	Measurement Result	s Other Results Error Detail	5	Raw Data	Contraction of Contra	User Advanced S
ID Inputs	I-V Lifetime dRsh/dl	Break Double Diode Fit P	ower Efficiency Charts Over Time	Outputs	Normalized Outputs	SunsVo: Outputs	Illumination	Voltage	ID In
User ID				ISC (A) 6.421	Jsc (A/cm*) 0.04193	pimp (A/cm ²) 0.03997	2.00-	-1.50	User ID
33K-1 Before				Voc (V) 1.375	Voc (V/cell) 0.6874	pVmp (V/celli) 0.6014	1.80-	-125	
Batch ID 33K-1 Berore		mp 🚺 Load Point 🚺	SunsVoc Model IV	Imp (A) 6.03	,http://cm*) 0.03938	pPmp (W/cm ²) 0.02404	1.60- W 1.40-		Batch ID Batch
Sample ID 90-10	7.0-			Vmp (V) 1.157	Vmp (V/cell) 0.5783	pFF (%) 83.41	120-	-1.00 5	Sample ID 60-1
	6.5-			Pmp (W) 6.973	Pmp (W/cm*) 0.02277	pEfficiency (%) 24.04	§ 1.00	-0.75	
Comments	6.0-			Rsh (Ω) 164.4 Rs (Ω) 0.01016	Rah (D-cm*) 12590.3 Ra (D-cm*) 0.7781	n @ 1 sun 1.015	E 0.80-	-0.50	Comments
	5.5-			Efficiency (%) 22.77	Cell Eff. (%) 22.77	n @ 0.1 suns 1.093	ff 0.60-		
Cell Inputs	5.0-				Cell Eff. (%) ZZJT		0.20-	-0.25	Cell In
Resistivity (Ω-cm) 3	4.5-			FF (%) 79		Jo2 (A/cm ²) 3.575E-9	0.00	-0.00	Resistivity (Ω-cm)
Sample Type 🗊 n-type	₹ 4.0-			Most Recent	Most Recent	Jo (fA/cm ²) 96.86 Est. Bulk	0.00E+0 1.00E-3 2.00E Time		Sample Type
Thickness (cm) 0.018	tu 3.5-			Load Point Outputs	Normalized Load Outputs	EST. BUTE Lifetime (µn) BRR (Hz) 218.7	-		Thickness (cm)
Cell Area (cm²) 153.125	B 3.0-			ILoad (A) 6.03	JLoad (A/cm ²) 0.03938	Lifetime 726.6	Illumination	Current	Cell Area (cm ²)
Total Area (cm²) 306.25	2.5-			VLoad (V) 1.157	VLoad (V/cell) 0.5783	@ Vmp (us) Doping (cm-2) 1.563E+15	2.00	-12.00	Total Area (cm ²)
Number of Cells	2.0-			PLoad (W) 6.973	PLoad (W/cm ²) 0.02277	Measured Registricity (Overal)	1.80 -	-10.00	Number of Cells
per String	1.5			Rsload (Ω) 0.01016	RsLoad (Ω-cm*) 0.7781	incontracting the contraction of the	1.60-		per String Number of Strings
Number of Strings	1.0-			EffLoad (%) 22.77	Cell EffLoad (%) 22.77	Lifetime Fit R* 0.9829	3 120-	-8.00	
Temperature (°C) 25	0.5 -			FFLoad (%) 79		Rs Modulation (Q-cm ²) 0.4358	g 1.00-	-6.00	Temperature (*C)
Intensity (suns)	0.0-					Measured Temperature (*C) 23.02	ig 0.80-	-4.00	intensity (suns)
Analysis Type 😨 Generalized	0.00 0.10 0.20 0	130 0.40 0.50 0.60 0.70 0.80 Voltage (V	0.90 1.00 1.10 1.20 1.30 1.40 1.50	Power ()	N) 6.973		≣ 0.60-		Analysis Type
easurement Type 🔹 Full IV						Total Test Time (s) 23.46	0.20-	-2.00	Measurement Type
						Measurement	0.00	-0.00	Load Voltage (mV)
oad Voltage (mV) 570					Binning Results	Oate-Time 04:21:37 PM	0.005+0 1.005-3 2.005 Time	-5 5.00E-3 4.00E-3 (5)	
Rs Modulation Target (Ω-cm ²) 0.7113				Final Bin B	Bin Index 1	Aug-24-2016			Rs Modulation Target (Ω-cm ²)
in Berleven 1									

Final Results

After analyzing the data, these were the best encapsulation stacks for each angle.

Stack	Degree	Change in E
FEK	90	
FEK	80	
3EK	60	
F3K	50	

Further Investigation

This project could be extended to test other combinations of topsheets and encapsulants. It could also be extended to complete testing on the different combinations of backsheets with encapsulants/backsheets with topsheets, as well as testing the effects of other techniques such as dicing or texturing on the electrical performance of solar cells/modules.

Acknowledgements

We would like to recognize Prof. Thomas Kenny for sponsoring our work this summer and also Prof. Mike McGehee for advising us and mentoring our team on how we should approach our ideas. Finally, we would like to recognize the Solar Car team and alumni for sharing their resources and knowledge.

Flash y	Sav Recipe		ie Results		Report	Disabled	MultiFlash	4.10	
	Cancel Routin		perator ess Unlock		ware 🔘	TCP Connection Down	© Sinton In		\$ 2015
Aeasureme	nt Results	Other Results	Error Details		Raw Data				
Out	puts	Normalize	of Outputs	SunsVoc Outputs				-	
Isc (A)	4.94	Jac (A/cm*)	0.03226	p/mp (A/cm ²) 0.030	81 2.00 7	Illumination	Voltage	-150	
Voc (V)	1.361	Voc (V/cell)	0.6803	pVmp (V/cell) 0.595					
Imp (A)	4,715	Jmp (A/cm ²)	0.03078	pPimp (W/cm*) 0.018	54 1.60-	1		-1.25	
Vmp (V)	1.142	Vmp (V/cell)	0.5708	pFF (%) \$3.59	g 1.40-	-		-1.00	
Pmp (W)	5.38	Pmp (W/cm*)	0.01757	pEfficiency (%) 18.34	8 1.20- 8 1.00-	1		-0.75	Volta
Rsh (Q)	333.8	Rsh (Q cm²)	25560	n @ 1 sun 1.03	2 0.80-	1			
Rs (Ω)	0.03059	Rs (Ω-cm ²)	0.8108	n @ 0.1 suns 1.075		1 and a second		-0.50	
fficiency (%)	17.57	Cell Dff. (%)	17.57	301 (A/cm²) 1.224		1		-0.25	
FF (%)	80.05			Jo2 (A/cm ²) 2.028	E-9 0.20-	1		-0.00	
	Recent It Outputs	Most Recent Normalized	Load Outputs	Jo (fA/cm ²) 98.34 Est. Bulk Lifetime (us) 5395	0.00			LOOE-3	
ILoad (A)		JLoad (A/cm ²)		BRR (Hz) 178.7		Illumination	Ourrent		
VLoad (V)		VLoad (V/cell)		D Vmp (us)	2.00 **			-12.00	
PLoad (W)		PLoad (W/cm*)	and the second se	Doping (cm-2) 1.563	E+15 1.80-				
ReLoad (D)		ReLoad (Q-cm*)		Measured Resistivity (D-cm) NaN	1.60-			-10.00	
EffLoad (%)	17.57	Cell EffLoad (%)		Lifetime Fit R ^a 0.996	5 2 140-	\sim		-8.00	
FFLoad (%)	80.05			Rs Modulation (Ω-cm*) 0.984	5 2140- 5 120- 5 120	M	-	-6.00	Current (A)
_				Measured 23	3 0.60-	8		-4.00	
P	ower (W)	5.38		Total Test Time (s)	0.40-	1		-2.00	
	Bin	ning Results		Measurement Date-Time	0.00-	+0 1.008-3 2.008-3		-0.00	
Final Bi	n t	Bin Index	4	03:36:25 PM Aug-24-2016		Time (s	a		

Initialize Calibrate Measure aded C:\SintonInstruments\ Active cipe: Stanford 2c.mfi Alarms:

